
Murmurations
A distributed data sharing protocol

White Paper v1.0 - April 2024
Geoff Turk & Oliver Sylvester-Bradley

______________________________________________________________________

Introduction
There is nothing more difficult to take in hand, more perilous to
conduct, or more uncertain in its success, than to take the lead in
the introduction of a new order of things. — Niccolò Machiavelli

Murmurations is a distributed data sharing protocol. It describes a method for coordinating
the storage, indexing and retrieval of data that enables a decentralized database. The
ultimate goal of Murmurations is to facilitate collaboration at scale by enabling interoperable
data sharing across platforms and between networks, while providing individuals and other
data creators control over their data.

Overview

What is a database?
A database is a collection of data organized for rapid search and
retrieval by a computer. [ref]

A database is a systematic way of storing information to be accessed,
analyzed, transformed, updated and moved with efficiency. [ref]

A database performs two key functions that make large-scale information management
possible:

1. It stores information following a defined format
○ name, street_address, city as strings of text, country as a 2 letter

code, etc.
2. It enables fast search and retrieval of information

○ Find every node in Canada (CA) with the word "brewery" in its name

https://www.britannica.com/technology/database
https://builtin.com/data-science/database


What are the advantages and disadvantages of a decentralized
database?

Advantages
A decentralized database offers several advantages over the centralized database approach
that is the model of nearly every database we interact with today.

Decentralized Databases Centralized Databases

Enable custody of our data to parties we trust, or
to manage our data ourselves using the right
tools.

Entrust a small number of remote entities to hold
our data, even if they don’t prioritize our best
interests.

Data commons - Increased interoperability of
data and ability to choose where it can be used.

Siloed data - limited interoperability and data
portability (platform lock-in).

Enable data owners to make the same data
available for multiple uses, restrict access to
their data, or share it widely when appropriate.

Data duplication - how many websites have we
typed our address into and how long would it
take to make a change in each of them?

First of all, decentralized databases allow us more granular control over who we trust to hold
our data. We can decide where we want to store various information about ourselves, our
projects, possessions, economic interactions, etc. As long as we follow the protocol for data
storage, the location where it is stored can be anywhere on the internet.

Second, this flexibility of storage location discourages data silos and platform lock-in. The
fact that data can be stored anywhere the data owner/creator chooses means that they do
not have to rely exclusively on the tools of a single provider when it comes to accessing,
searching, sharing and retrieving their data. A true data commons becomes achievable
when data storage and searching is based on an open protocol.

And finally, data duplication as well as redundant and outdated data are no longer an issue
like with centralized databases. Data creators store their data in one place and those who
wish and are authorized to access it can then pull the latest changes to that data whenever it
is updated (see the section Source data & aggregated data below).

Disadvantages

Decentralized Databases Centralized Databases

Indexes and data tables are distributed across
the network so response time is highly variable,
since data is fetched from multiple hosts.

Offer faster response times because the
database is hosted on one server or a cluster of
servers, usually in the same physical location.

Variable availability - depends on the overall
reliability of nodes and indexes.

Can offer high availability with enough
investment in infrastructure.

2 rev03



By its very nature of being decentralized, we can not expect such a database to be as fast
as a conventional centralized database. But once the relevant data is collected during
aggregation, all the performance characteristics of a conventional database can then be
leveraged by an aggregator (see Aggregators below).

How is the Murmurations decentralized database structured?
Recall the two key functions of a database described earlier:

1. It stores information following a defined format
2. It enables fast search and retrieval of information

A centralized database takes on both of these functions entirely on its own. The information
is sorted into columns (e.g., name, street_address, country, etc.) and stored in tables,
with each row in the table containing the information about a data subject. A centralized
database also has indexes which record the location of data in certain columns (e.g.,
country) in order to quickly perform queries to retrieve a subset of the table's data.

Murmurations splits up the functions of a centralized database and shares the work across
several different entities:

● Each 'row' in a decentralized database 'table' is a record stored independently on the
internet (a “profile”), preferably by the data owner ("node") or a trusted party.

● The 'columns' (what we call "fields") define the types of data in the decentralized
database 'table'. Collections of fields are defined by "schemas". We refer to the
schema hosting service as a “library”.

● A subset of the fields from every profile are recorded in a service called an “index” so
that profiles can be quickly searched and then retrieved, just like in a centralized
database.

● Multiple libraries and indexes can be operated by different parties, all conforming to
the same protocol to ensure interoperability of profile data.

3 rev03



Components
The following components and their interactions make up the Murmurations distributed data
sharing protocol.

Nodes
A node (as defined in relation to a graph database) is an entity (person, project,
organization, event, etc.) that has a profile which is registered in the Murmurations index.

Ideally nodes are managed by the data owner for maximum data authority and reliability. For
example, data describing XYZ Org hosted at xyz.org is more likely to be accurate and
authoritative than data describing XYZ Org which is hosted at
another-site.com/xyz_org.

Nodes generate source data. Each node is recognized as the implicit owner of the data
about it. When an organization states its name, mission and founding date, that data is
owned by that named organization. When an individual posts a 3 sentence thought about a
topic, that data is owned by that individual.

It must be highlighted that most source data today is not controlled (or even completely
owned) by its data source. Instead, source data is often hosted by third parties and
sometimes the link of ownership of that data and its allowed use is weakened for the data
source by implicit contracts created between the data source and the third party data host.
All too often source data is reused by the third party in multiple ways for marketing, profiling
and other purposes.

In Murmurations data sources can host their data themselves (e.g., by posting it to their
websites) or use a third-party service that hosts their data for them. A working example of a
data hosting service is at <https://test-tools.murmurations.network/profile-generator> in the
Murmurations test network, and the code is maintained at
<https://github.com/MurmurationsNetwork/MurmurationsTools>.

An example of a self-hosted node profile can be found here: <http://open.coop/open.json>

Relationships mapping
Nodes are not restricted to posting information only about themselves; they can also make
statements about their relationships to other nodes; thus Murmurations enables the semantic
web. These relationships can be captured using a semantic triple, which "is a sequence of
three entities that codifies a statement about semantic data in the form of
subject→predicate→object expressions (e.g., 'Bob is 33', or 'Bob is friends with
Alice')." [ref]

Triples can be combined in a myriad of ways to express simple and complex relationships
between nodes.

4 rev03

https://en.wikipedia.org/wiki/Graph_database
https://test-tools.murmurations.network/profile-generator
https://github.com/MurmurationsNetwork/MurmurationsTools
http://open.coop/open.json
https://www.techtarget.com/searchcio/definition/Semantic-Web
https://www.techtarget.com/searchcio/definition/Semantic-Web
https://en.wikipedia.org/wiki/Semantic_triple


We have implemented the relationships triple in Murmurations as follows:

1. The node described in the profile is presumed to be the subject of the triple (e.g., Bob
in the diagram above), thus the implied subject_url is in fact the node's
primary_url.

2. A list (array) of relationships (objects) is then described with the relevant predicates
and objects, for example:

"relationships": [
{

"predicate_url": "https://schema.org/contributor",
"object_url": "https://murmurations.network/"

},
{

"predicate_url": "https://schema.org/memberOf",
"object_url": "https://www.collaborative.tech/"

}
]

The relationships field in Murmurations is defined here:
<https://github.com/MurmurationsNetwork/MurmurationsLibrary/blob/main/fields/relationships.json>

This is just one possible implementation of semantic triples in Murmurations, which is
influenced by the resource definition framework (RDF) graph model. Schema creators may
define others that better meet their use cases and then host them in their own libraries.

Libraries
A library is a service that records the definitions of data, specifically:

1. The fields that define a unit of data (e.g., name, country, etc.)

5 rev03

https://github.com/MurmurationsNetwork/MurmurationsLibrary/blob/main/fields/relationships.json
https://en.wikipedia.org/wiki/Graph_database#Resource_Description_Framework_(RDF)
https://github.com/MurmurationsNetwork/MurmurationsLibrary/blob/main/fields/name.json


2. The schemas that are composed of fields (e.g., the Murmurations Organizations
schema)

You can think of schemas as files that define the names and validation parameters of the
first row in a spreadsheet of data. In other words, a schema defines the structure of a table
in a conventional database.

Just as public libraries are distributed around the world yet share many common books,
Murmurations libraries should also be widely distributed and host common fields, and
schemas composed from those shared fields. Index operators and even aggregators can
replicate the Murmurations Library repository (use the common field and schema sets) and
add their own custom fields and schemas specific to their use cases. By standardizing on a
common set of fields, data interoperability is maintained while multiple library operators can
compose and share specialized add-on schemas that work in tandem with the core
schemas, thus fulfilling their own unique data schema requirements.

Fields are defined on two levels:

1. Validation
a. Each field must be defined to contain a certain type of data, for example, a

string, a number, etc. Other parameters such as length, pattern matching
(with regexes) and minimum/maximum values can also be specified.

2. Context
a. A field's meaning can be clarified by linking it to a definition available at some

URL (e.g., <https://schema.org/NGO>).
b. Other semantic data can also be leveraged to illustrate the relationships

between different types of data. For example, how a NGO relates to a more
generic organization:
<https://schema.org/NGO> → is a → <https://schema.org/Organization>

c. Also, a field can reference a more detailed specification that further defines
data inputs and associated labels, thus enabling translation into multiple
languages.

Core & add-on schemas
Core schemas are groups of fields that establish a generic actor or object: organization,
person, item, service, etc.

Add-on schemas enhance core schemas with further details about the actors' or objects'
unique properties. So add-on schemas to the core Organizations schema could include
groups of fields describing specific data about a networks’ members, or about NGOs,
for-profit entities, open source projects, etc.

For example, two networks could both use the Organizations schema, but the first network
may pair it with a for-profit company information schema and the other may pair it with a
non-profit information schema, each matching their own specific data requirements while
ensuring that their core data remains interoperable. The idea is that common fields are

6 rev03

https://github.com/MurmurationsNetwork/MurmurationsLibrary/blob/main/schemas/organizations_schema-v1.0.0.json
https://github.com/MurmurationsNetwork/MurmurationsLibrary/blob/main/schemas/organizations_schema-v1.0.0.json
https://github.com/MurmurationsNetwork/MurmurationsLibrary
https://schema.org/NGO
https://schema.org/NGO
https://schema.org/Organization


shared using the core schemas, but detailed fields can be added on just by including a
second, more specialized schema specific to a specific use case.

Core schemas are fundamental to data interoperability, so they should be used whenever
possible to ensure maximum data compatibility. Add-on schemas enable ontological
flexibility and can be used to give fuller context to source data.

Indexes
An index is configured to store the data of specific fields that will be searched for by users of
the index. For example, an index that records the country and tags fields enables
searches such as "find all nodes in France with the 'bio' or 'agriculture biologique' tag" or
"find all nodes in North America with the 'organic' and 'beer' tags".

As of April 2024 there are two Murmurations indexes, one for test data and one for real/live
data. Recognizing that these indexes centralize one aspect of the Murmurations
infrastructure we have now developed detailed deployment documentation to enable other
parties to set up their own indexes.

Indexes perform 3 main functions:
● Facilitate node searching
● Track when profiles are created and changed (last_updated & profile_hash)
● Sync profile changes for schemas shared with peers

Index synchronization
An index can synchronize with other indexes by comparing source data which is common to
both indexes for nodes with common schemas. Consider the simple scenario of two indexes
(Alpha and Beta) synchronizing.

7 rev03

https://docs.murmurations.network/about/ontology-composability.html
https://docs.murmurations.network/about/ontology-composability.html
https://docs.murmurations.network/developers/environments.html
https://github.com/MurmurationsNetwork/MurmurationsServices/tree/main/docs/rancher


1. Alpha index and Beta index have the B schema in common in their libraries, and they
are peers.

2. Node 3 uses the B schema.
3. Node 3 creates a profile and registers it with Alpha.
4. Node 3 updates its profile, and registers it with Beta.
5. Later during index profile peer syncing, Alpha asks Beta if it has seen Node 3 before.
6. Beta has, and sends the profile_hash and last_updated timestamp for it.
7. Alpha's profile_hash (from step 3) is different from Beta’s profile_hash (from

step 4), so Alpha compares their last_updated timestamps.
8. Because Beta's timestamp is more recent than Alpha's, Alpha reaches out to the

node to pull the latest version of Node 3’s profile and then updates its indexed data
and last_updated timestamp.

Beta regularly performs the same request to Alpha (and any other peers) in order to update
its records relative to Alpha's (and other peer indexes') entries. Tight yet data-efficient
synchronization can be achieved if this peer data checking process is nearly continuous
(polling every few seconds) between all peers.

Aggregators
Once a network's nodes have been recorded in the index, aggregators can then query the
index to find relevant nodes in order to create their own maps and directories.

Because aggregators pull the node data from unknown/untrusted sources, they need to
validate source data before importing it into their own databases for further processing. This
means ensuring they are receiving valid JSON documents and that the JSON data within
them validates to the associated schemas.

To ensure a decentralized network where definitive data about a node is ideally hosted by
the node itself, aggregators should always favor data that originates directly from its source.
For example, if xyz.org hosts its data at its own website (xyz.org/murm-data.json),
then aggregators should always favor that profile over any other claiming to be about
xyz.org (e.g., hosted at many-orgs.net/xyz_org/murm-data.json).

A working example of an aggregator is at
<https://wordpress.murmurations.network/software-map/> with its source code here:
<https://github.com/MurmurationsNetwork/MurmurationsAggregatorWP>.

Source data & aggregated data

Aggregation - the process of combining things or amounts into a single
group or total [ref]

To represent groups of source data in meaningful ways, aggregators collect data from
multiple data sources to generate maps, directories, etc. This aggregated data then

8 rev03

https://wordpress.murmurations.network/software-map/
https://github.com/MurmurationsNetwork/MurmurationsAggregatorWP
https://dictionary.cambridge.org/dictionary/english/aggregation


represents a snapshot of that grouped source data at the moment the source data was
accessed and stored in the aggregator's database. Thus aggregated data is only relevant if it
is tightly synchronized with the data source, which is facilitated by checking frequently for
updates through an index and then pulling through the latest changes directly from the data
source.

1. A node (data source) informs an index about the creation of, or changes to, its
profile.

2. The index fetches the profile, validates and then indexes relevant data fields.
3. An aggregator requests the list of nodes from the index that match specific search

criteria.
4. The aggregator then fetches all data from relevant nodes for aggregation into maps,

etc.

Tools
Murmurations evolved from an idea about defining the DNA of collaboration in 2019 and is
now in its second implementation. Version 1, originally built in PHP, has now been
completely replaced with a series of open source building blocks written in Golang and
ReactJS, which provide various tools to help people use and experiment with the protocol.

We run two identical environments, one for testing and one for production, featuring the
following tools:

● An Index Explorer for searching the data in the Murmurations index
● A Profile Generator for creating, and optionally hosting, Murmurations profiles
● A Index Updater for adding, updating and removing profiles from the index

9 rev03

https://open.coop/2019/03/07/defining-dna-collaboration/
https://test-tools.murmurations.network/profile-generator
https://tools.murmurations.network/profile-generator
https://test-tools.murmurations.network/index-explorer
https://test-tools.murmurations.network/profile-generator
https://test-tools.murmurations.network/index-updater


● A Batch importer for registering large batches of CSV data for multiple profiles with
the index

We have also built out a range of supporting resources to help you learn about and get
involved with the project:

● The Mumurations website provides an introduction and project updates
● Our demonstration maps and directories show example using the components above
● The status reporting tool shows the performance of the network
● Our documentation provide full details explaining how all the components can be

used

We have also developed two WordPress Plugins:

1. The Murmurations Profile Generator Plugin - which makes it simple to publish and
share details about People, Projects, Organisations, or Offers and Wants from within
WordPress

2. The Murmurations Collaborative Map Builder Plugin - which makes it simple to
create, curate and update maps and directories of People, Projects, Organisations,
or Offers and Wants using WordPress

Future Development
The following concepts should be applied in Murmurations' distributed data sharing protocol
to fulfill its goal of facilitating collaboration at scale while enabling individuals and other data
creators to maintain control over their data. These concepts would also help ensure
authenticity of data and provide measures to prevent spam and other data spoofing and
mismanagement scenarios.

Data privacy
At the moment any data shared via Murmurations is open and publicly accessible by
anyone. However, Murmuration's data sharing protocol has been designed to enable
granular access control over data exchanged over the network by layering well-known and
widely used data access and authorization protocols.

For example, indexes could require access control (e.g., authentication protocols such as
JWT or API tokens) so that the search results are available only to parties authorized by the
index operators.

Nodes may obfuscate their profiles by posting them at randomly named URLs and then
posting them only to access protected indexes. More importantly, nodes could selectively
encrypt (using public/private key encryption technology) certain data fields so that they can
be read only by parties chosen directly by the node. For example, a telephone number could
be read only by a select group of individuals, or an email address could only be seen by
members of a specific network. Everyone else who has access to the profile will only see an
encrypted blob, not the actual information.

10 rev03

https://test-tools.murmurations.network/batch-importer
https://murmurations.network/
https://murmurations.network/demos/
https://status.murmurations.network/
https://docs.murmurations.network/
https://docs.murmurations.network/developers/wp-node.html
https://docs.murmurations.network/developers/wp-aggregator.html


Authentication of data (i.e., verifying the data owner/creator) may be managed in a variety of
ways. When a node hosts its own data, a certain level of authenticity (or what we like to call
"authority") is achieved because the node is hosting statements about itself on its own
website. The very fact that the profile_url contains the primary_url means the index
and aggregators have a significant amount of trust that the data is authoritative for that node.
In other words, a profile hosted at xyz.org is authoritative for the XYZ organization who is
associated with that xyz.org website address. Exchange XYZ and xyz.org with any
well-known entity and its website address to fully understand this concept of authority.

Usually third party hosted data implies some sort of authentication of a data source by the
third party; one is trusting the third party to vouch for the data source's identity. However,
whenever data is signed by the data source, even if it is hosted by a third party it can still be
authenticated as coming from its owner. Further authentication of data can be achieved by
using the same public/private key encryption technology used for selectively encrypting
certain field data. A node can digitally sign field data or even an entire profile, and any index,
aggregator or other interested party can verify the data was signed by that node.

Restricted access to and authentication of data (regardless where it is hosted) can be
achieved by implementing the selective encryption and data signing on the application layer
that interacts with the data stored in profiles hosted by nodes. Although it is not yet
implemented, we envision building this functionality into the existing profile generator and
also a new data viewing component in our proof of concept data hosting service.

Spam management
There are two basic approaches to managing data spam: allow everything and then
selectively deny, or deny everything and then selectively allow. There are different use cases
for both approaches, so Murmurations indexes should accommodate either.

The classic approach is to allow everything ("default allow") and selectively deny posting
profiles to an index from websites that become known as spam sources. This might become
a lot of work for an index operator as it entails constantly updating its deny list and sharing it
with peered indexes, as anyone managing an email server can confirm with email spam
prevention.

Another approach is to deny everything ("default deny") but then selectively allow certain
websites to publish profiles to an index. This approach requires much less ongoing
maintenance but its does require index operators and the networks of nodes to confirm a
definitive set of websites from which the data will be sourced. The other long-term benefit is
that "default deny" enables indexes to significantly simplify filtering and increase accuracy.
Additionally, this process of discovering and agreeing members of a trusted network could
eventually be automated by leveraging relationships between various nodes and networks
as defined in their profiles.

11 rev03

https://docs.murmurations.network/faqs/schema.html#what-is-a-primary-url
https://test-tools.murmurations.network/profile-generator


Conclusion
Murmurations directly addresses the aim that has been attributed to the advent of blockchain
technology, the first technology that attempted to improve upon the traditional database:

What if your database worked like a network — a network that’s shared with
everybody in the world, where anyone and anything can connect to it? [ref]

In 2007, futurist and inventor Nova Spivak suggested that Web 2.0 was about collective
intelligence, while the new Web 3.0 would be about connective intelligence. Unfortunately for
the Web 3.0 vision, the vast majority of funding and technical development since Nakamoto's
2008 white paper has centered on the implementation of blockchain. Whilst it is undeniably a
powerful technology for managing decentralized transaction data and limiting centralized
control, blockchain's "trust-less" relationships and ledgers have not delivered connective
intelligence.

By contrast, Murmurations aims to facilitate "trust-based" relationships and transactions
which enrich the quality and increase the value of data, whilst making it interoperable and
understandable by machines and AI to empower individuals, groups and networks to deliver
on the Web 3.0 vision of connective intelligence.

Using the components and concepts described above, Murmurations enables a wide variety
of new and intriguing use cases. For example, we envisage Murmurations as a founding
metaprotocol for truly decentralized social networking. The next layers we build together on
top of Murmurations will drastically increase its utility.

Get started
Our roadmap is at:
<https://github.com/orgs/MurmurationsNetwork/projects/7>

Our current development pipeline is at:
<https://github.com/orgs/MurmurationsNetwork/projects/2>

The source code of the reference implementation of Murmurations can be found at:
<https://github.com/MurmurationsNetwork/>

And documentation is at:
<https://docs.murmurations.network/>

Your can reach out to us at:
<https://murmurations.network/contact/>

Thanks to Matt Slater and Nick Stokoe for their review and feedback on a draft version of
this white paper.

12 rev03

https://hbr.org/2017/03/the-promise-of-blockchain-is-a-world-without-middlemen
https://github.com/orgs/MurmurationsNetwork/projects/7
https://github.com/orgs/MurmurationsNetwork/projects/2
https://github.com/MurmurationsNetwork/
https://docs.murmurations.network/
https://murmurations.network/contact/

